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Introduction 1. Boundary Detection
- Explore the use of recurrent neural networks to capture - Problem: classify whether or not a /Ground truth 0 0 1 \ Results
l0- ' ' ' ' Model output
spatio-temporal structure of a video with a view to !ooundary_/ oc_curs at cur_rent frame given the odel outpu )T( )T( )T( Enocnll Accuracy i DEnccnll Recnracy
identify “interesting” video segments. information in the previous two frames and Fully Connected - 15 =9 T ek 5
- Use data containing hand-labeled videos to train a long the current frame LS TMe “ ‘ : 0° 150 99.800/0
short-term memory network for predicting 1) video « Video length = 9 frames L L 10 93'400/0 > : O°
segment boundaries and 2) video frame interestingness « LSTM steps = 3 VGG16 / \/ \/ \ 25 27.22% 200 99.86%
scores. 50 99.73% 250 99.88%

Dataset: TVSumb50

50 videos (collected from YouTube)

» 10 categories, 5 videos per category [ aies

- Changing vehicle tire

« Getting vehicle unstuck

« Grooming an animal

« Making sandwich

« Parkour

- Parade

- Flash mob gathering

« Bee keeping

« Attempting bike tricks

 Dog show
« Each video is annotated by 20 users
« Users are asked to assign a value

between 1 and 5 to each frame

Normalized Scores vs. One Annotation

Importance Score
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« LSTM hidden state = 256 \Video frames . . . /

2. Computing Frame Interestingness Scores

« Problem: use regression to assign a Results
score between 1 and 5 to each frame Ground truth e 3
« Total number of frames = 352,000 Model output X Architecture Average
o " f Accuracy
« Subsampling: every 5 frame was Fully Connected | A co =
selected — o7 bl
. LSTM steps: -« Architectures | T =T_> _>T A-10% 75.70%
. 16 (layer/hidden states) LSTMs B - 10% 64.97%
. 32 . 1/256 g Iy s BN S C - 10% 52.58%
+ 64 - 1/512 D-10% 75.40%
) ;;ﬁig VGG16 / \ / \ / \ o D Experiments used a batch size of 256,

Video frames o oo sequence length of 16, and various thresholds
of 5% & 10%.

Sequence Prediction Average

Threshold Comparison

Sequence Prediction Average
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Length Threshold Accuracy Length Threshold Accuracy

16 5% 32.20% 32 10% 46.03%
Iil |i| Iil 16 10% 75.70% 64 5% 30.41%

32 5% 30.26% 64 10% 53.58%
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Importance Score

Frame

1 5% Threshold L_110% Threshold Experiments used a batch size of 256, each training/testing split
included testing on different categories.
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