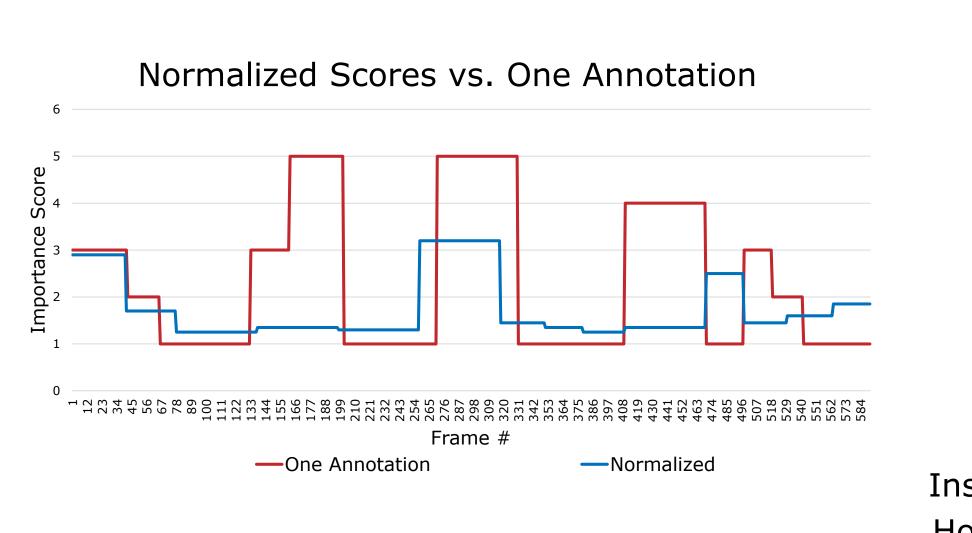


Introduction

- Explore the use of recurrent neural networks to capture spatio-temporal structure of a video with a view to identify "interesting" video segments.
- Use data containing hand-labeled videos to train a long short-term memory network for predicting 1) video segment boundaries and 2) video frame interestingness scores.

Dataset: TVSum50

- 50 videos (collected from YouTube)
- 10 categories, 5 videos per category
 - Changing vehicle tire
 - Getting vehicle unstuck
 - Grooming an animal
 - Making sandwich
 - Parkour
 - Parade
 - Flash mob gathering
 - Bee keeping
 - Attempting bike tricks
 - Dog show
- Each video is annotated by 20 users •
- Users are asked to assign a value between 1 and 5 to each frame



Exploring LSTMs for Video Analysis

Michael N. Lombardo, Michael.Lombardo@uoit.net Faculty of Science, University of Ontario Institute of Technology Supervisor: Faisal Z. Qureshi

1. Boundary Detection

• **Problem:** classify whether or not a Ground truth Model output boundary occurs at current frame given the information in the previous two frames and Fully Connected the current frame LSTMs • Video length = 9 frames • LSTM steps = 3 VGG16 • LSTM hidden state = 256 Video frames

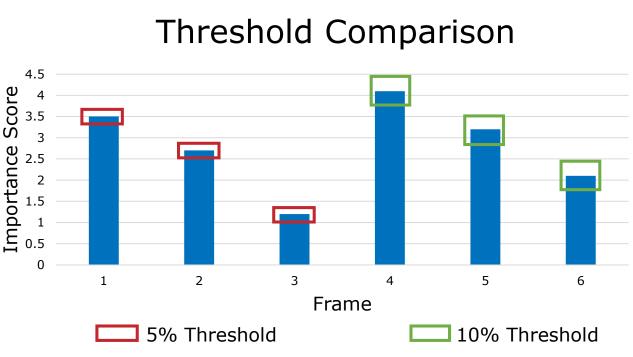
2. Computing Frame Interestingness Scores

• **Problem**: use regression to assign a score between 1 and 5 to each frame • Total number of frames = 352,000

- Subsampling: every 5th frame was selected
- LSTM steps:
- 16
- (layer/hidden states)
- 32 • 64
- 1/256

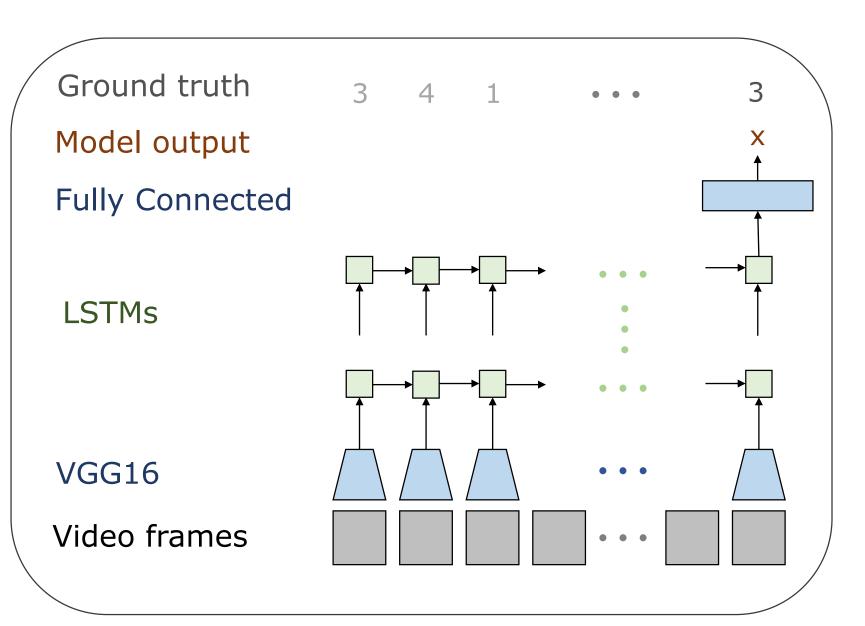
Architectures

- 1/512
- 2/256
- 2/512



Acknowledgements

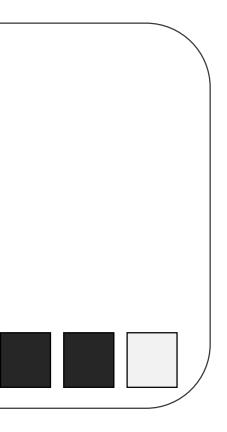
A special thank you to the University of Ontario Institute of Technology for allowing me to complete my Honour's Thesis, and the supervision of Faisal Qureshi.



Sequence Length	Prediction Threshold	Average Accuracy	Sequence Length	Prediction Threshold	Average Accuracy
16	5%	32.20%	32	10%	46.03%
16	10%	75.70%	64	5%	30.41%
32	5%	30.26%	64	10%	53.58%

- importance scores of frames.

vclab.ca



Epoch	Accuracy	Epoch	Accuracy
0	12.85%	100	99.79%
10	93.40%	150	99.80%
25	97.22%	200	99.86%
50	99.73%	250	99.88%

Results

R	29		ts
	23	u	

Architecture	Average Accuracy	
A – 5%	32.20%	
A - 10%	75.70%	
B - 10%	64.97%	
C – 10%	52.58%	
D - 10%	75.40%	

Experiments used a batch size of 256, sequence length of 16, and various thresholds of 5% & 10%.

Experiments used a batch size of 256, each training/testing split included testing on different categories.

Future Directions

Explore other neural networks to add more layers to the Classification process for the

Determine the representativeness, and uniformity of each frame in a given video.